

 JLF 1

The C*® Language

James L. Frankel
Thinking Machines Corporation

 JLF 2

Goals

• C tradition: efficient, fairly low-level, follow Standard C

• Tailored for data parallel computing

• Dynamic behavior

• Simple pointer syntax and semantics

• Allow lower-level machine access

• Allow layered object-oriented extensions

Crucial New Concepts

• Shape

• Left-indexing

• Parallel variable

• Overloading

• Context

 JLF 3

Shapes

shape Sa, [4096]Sb, [2048][8]Sc;

shape [32][64]Sd, []Se, [][]Sf;

• fully specified

• partially specified

• fully unspecified

• left-indexing

• On the CM-2, there is a restriction that the dimension
of each axis must be a power-of-two and that the total
number of positions must be a multiple of the number
of processors in the attached portion of the
Connection Machine.

Arrays of shapes:

shape Sarray1[40];

shape []Sarray2[20];

shape [8][1024]Sarray3[4];

 JLF 4

Parallel Variables

int:Sa ai1, ai2;

int:Sb bi1, bi2;

double ad1:Sa, bd1:Sb, bd2:Sb, bd3:Sb;

• The shape must be fully-specified before a
parallel variable is declared of that shape.

• Unlike most C implementations, the C* compiler
allocates storage for parallel variables on entry to
a block. Storage for scalar variables is still
allocated on entry to a function.

Shape Selection

with(Sb) {

 bd1 = bd2 + bd3;

}

• can nest

• dynamically bound to call chain

• can exit

 JLF 5

Special Shapes

current

• ―current‖ is bound at execution time to the
currently selected shape.

physical

• ―physical‖ is a one-dimensional shape whose
number of positions is equal to the number of
processors in the attached portion of a
Connection Machine.

void

• ―void‖ as a shape is for use with pointers.

 JLF 6

New Operators

<? Minimum operator

• Similar to the usual macro:
#define min(x, y) ((x) < (y)) ? (x) : (y)
except each argument is evaluated only once.

>? Maximum operator

• Similar to the usual macro:
#define max(x, y) ((x) > (y)) ? (x) : (y)
except each argument is evaluated only once.

<?= Minimum assignment operator

• Assignment version of the <? operator.

>?= Maximum assignment operator

• Assignment version of the >? operator.

%% Real modulus operator

• The % operator is not uniquely defined when
either argument is negative.

 JLF 7

• The result has the same sign as the denominator.

 JLF 8

Examples of Min and Max Operators

int i;

i = 52 <? 17;

i

17

i = 52 >? 17;

i

52

i = –34;

i <?= 22;

i

–34

i = –34;

i >?= 22;

i

22

 JLF 9

Examples of Modulus Operator

int i;

i = 17 %% 32;

i

17

i = 32 %% 32;

i

0

i = 34 %% 32;

i

2

i = (–3) %% 32;

i

29

i = (–3) %% (–5);

i

–3

i = (–5) %% (–5);

i

0

i = (–7) %% (–5);

i

–2

i = 4 %% (–5);

i

–1

 JLF 10

Expression Syntax

Standard (ANSI/ISO) C

 with

overloaded operators for shapes and parallel
variables

para1 = para2 binary-op para3;

para1 = unary-op para2;

para1 = para2 ? para3 : para4;

Promotion

• In most cases, when a scalar variable is combined
with a parallel variable, the scalar is promoted to
parallel by replication.

 JLF 11

Parallel-to-Scalar Reductions

scalar assignment-op parallel

 += –=

 |= &= ^=

 <?= >?=

And, in the CM-5 version only:
 *= /=

Unary Overloading of Assignment Operators

• All of the operators above may be used as unary
operators if their operand is parallel.

• This unary overloading simply returns the reduction.

 JLF 12

scalar –= parallel;

 is defined equivalent to

scalar += – += parallel; or scalar –= += parallel;

 JLF 13

Context Manipulation

―where‖ statement

where (parallel-condition)

 statement

where (parallel-condition)

 statement

else

 statement

• The context is maintained on a by-shape basis.
Therefore, when the context is altered,
operations on all parallel variables of that shape
are affected.

• The ―where‖ statement narrows the context for
the duration of its nested statement(s).

• Can nest

• Dynamically bound to call chain

• Can exit

• Can call functions

 JLF 14

• Scalar code in statement is always executed

 JLF 15

Context Enlargement

―everywhere‖ statement

everywhere

 statement

• The ―everywhere‖ statement widens the context
for the duration of its nested statement.

• Dynamically bound to call chain

• Can exit

• Can call functions

• Scalar code in statement is always executed

• Context is not flow of control. Flow of control is
affected by conditionals.

• Use Standard C to manipulate flow of control.

• On break, continue, goto, and return, context and
shape are correctly reestablished.

 JLF 16

Combining Conditionalization and
Contextualization

if (|= (parallel-condition != 0))

 where (parallel-condition)

 statement

• The where statement will only be executed if at least
one element of the parallel-condition is true

• Thus, scalar code in statement is only executed if at
least one position of the current shape remains active

• If the parallel-condition is known to be 0- or 1-valued,
the not-equal comparison to 0 is not needed, as
follows:

if (|= parallel-condition)

 where (parallel-condition)

 statement

• If the parallel-condition contains side effects, the
following template may be used:

 JLF 17

if (|= ((parallel-temp = parallel-condition) != 0))

 where (parallel-temp)

 statement

 JLF 18

Per-Position Iteration

while (|= (parallel-condition != 0))

 where (parallel-condition)

 statement

• The statement should cause code to be executed
which will eventually decrease the positions in which
the parallel-condition is true

• Thus, the statement is repeatedly executed with a
gradually diminishing set of active positions

• When no more positions remain active, the while loop

will terminate

• If the parallel-condition is known to be 0- or 1-valued,
the not-equal comparison to 0 is not needed, as
follows:

while (|= parallel-condition)

 where (parallel-condition)

 statement

 JLF 19

• If the parallel-condition contains side effects, the

following template may be used:

while (|= ((parallel-temp = parallel-condition) != 0))

 where (parallel-temp)

 statement

• This technique is similar for the other iteration
statements in C: do-while and for

• Here's an example of using this technique:

shape [4]S;

int:S count, prod;

[0]count = 3; [1]count = 0; [2]count = 2; [3]count = 1;

prod = 1;

while (|= (count>0))

 where (count>0) {

 count--;

 prod *= 2; 

 }

 JLF 20

0 1 2 3

count

prod

3 0 2 1

1 1 1 1

2 1 2 2

1

1

2

2

4

4

4

8

prod

prod

prod

before first
iteration

during first
iteration at 

inactive

1 248prod

count 2 0 1 0

count 1 0 0 0

count 0 0

count 0

0

0

0

00

during second
iteration at 

during third
iteration at 

after w hile loop
completes

 JLF 21

Unary Reductions with No Positions Active

• If a unary reduction operator is called when no
positions are active, the result is the identity for that
operator.

• The following table lists each reduction operator and
its identity.

 Operator Identity

 += 0

 –= 0

 *= 1

 /= 1

 |= 0

 &= ~0

 ^= 0

 <?= largest representable number

 >?= smallest representable number

 JLF 22

Short Circuit Operators

• Several operators in C have so-called short circuit
behavior.

• These are the &&, ||, and ?: operators.

• The && and || operators don’t evaluate their second
argument unless necessary. The ?: operator
evaluates either its second or third argument, as
appropriate.

• If either of the operands to && and || is parallel, the
other operand is promoted to parallel and the parallel
overloading of the operator is applied. If the first
operand to ?: is parallel, both the second and third
operands are promoted to parallel and the parallel
overloading of the ?: operator is applied. If the first
operand to ?: is scalar, the scalar overloading of the
?: operator is applied and, in addition, if either of the
second and third operands are parallel, the other is
promoted to parallel.

• The parallel overloadings of these operators perform
contextualization in the same way that the scalar
overloadings of these operators perform
conditionalization.

 JLF 23

Intrinsic Functions

• Intrinsics have function-like syntax, but knowledge of
the intrinsic is required by the compiler.

• For example, an intrinsic might be able to be
called where a function normally could not
appear.

• rankof

• rankof takes one argument: a parallel variable or
a shape.

• It returns the rank (number of dimensions) of its
argument.

• dimof

• dimof takes two arguments: a parallel variable or
a shape and an axis number.

• Axes are numbered from left to right starting at
zero.

• It returns the dimension of the specified axis.

• positionsof

 JLF 24

• positionsof takes one argument: a parallel
variable or a shape.

• It returns the total number of positions (the
product of all dimensions) of its argument.

 JLF 25

―pcoord‖

with shape Sc current:

pcoord(0) = shape [2048][8]Sc;

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

2047 2047 2047 2047 2047 2047 2047 2047

...

2048

pcoord(1) = shape [2048][8]Sc;

...

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

2048

 JLF 26

Left-indexing

[scalar]parallel yields a scalar

 where ―parallel‖ is a parallel variable of rank 1

• Moves scalar data to or from an element of a parallel
variable.

• In general, for a rank n parallel variable, all n left-
indices must be scalar to achieve this effect.

• A parallel variable may be scalar left-indexed without
requiring that the shape of the parallel variable is the
current shape. Furthermore, no shape need be
current to perform scalar left-indexing.

• May be used in conjunction with right indices if the
variable being indexed is an array of parallel
variables.

 JLF 27

General Communication

• Extend left index syntax to accept parallel indices.

• Parallel left indexes act like vector-valued subscripts.

• Subscripts give a mapping from the shape of the
parallel variable being indexed to the shape of the
index.

• The shape of a parallel-left-indexed parallel variable is
the shape of the index.

• The parallel left-indexes must be of the current shape,
but the parallel variable being indexed may be of any
shape.

• If some left-indexes are parallel and others are scalar,
the scalar left-indexes are promoted to parallel.

 JLF 28

Parallel Left-index on Left-Hand-Side

[index]dest = source;

0 1 2 3

index

dest

source

2 0 1 3

• This operation is a ―send.‖

 JLF 29

Parallel Left-index on Right-Hand-Side

dest = [index]source;

0 1 2 3

dest

index

source

2 0 1 3

• This operation is a ―get.‖

• A ―get‖ is roughly twice as expensive in time as a
―send.‖

• A ―get‖ requires much more storage than does ―send.‖
The ―get‖ needs to store a backward routing path.

 JLF 30

Parallel Left-index on LHS with Inactivity

where(index != 1)
inactive

[index]dest = source;

0 1 2 3

index

dest

source

2 0 1 3

inactivity affects sender

• An active position can send a datum to an inactive
position.

 JLF 31

Parallel Left-index on RHS with Inactivity

where(index != 1)
inactive

dest = [index]source;

0 1 2 3

dest

index

source

2 0 1 3

inactivity affects receiver

• An active position can get a datum from an inactive
position.

 JLF 32

Advanced Parallel Left-index Examples

shape [6]A, [2][3]B, [4][5]C;

double a:A, b:B, c:C;

int:A indexa0, indexa1, idxa0, idxa1;

int:B indexb;

int:C indexc;

a

0

1 2 3 4 50

92.1 1.21 42.0 11.13 13.1753.0

b

0

1

0 1 2

7.1 12.1 3.1

2.7 13.2 9.9

c

0

1

2

3

0 1 2 3 4

6.1 1.0 0.1 3.14 2.7

50.0 7.2 2.1 0.2 6.02

70.0 60.0 8.3 3.2 0.3

12.0 10.0 93.7 9.4 4.3

 JLF 33

with(B)

 [indexb]a = b;

indexb

0

1

0 1 2

5

4

2 0

1 3

a (after)

0

1 2 3 4 50

7.112.13.1 2.713.2 9.9

• This operation is a ―send.‖

 JLF 34

with(A)

 a = [indexa0][indexa1]b;

indexa0

0

1 2 3 4 50

0 0 01 1 1

indexa1

0

1 2 3 4 50

1 1 0 02 2

a (after)

0

1 2 3 4 50

7.112.13.1 2.713.2 9.9

• This operation is a ―get.‖

 JLF 35

with(A)

 [indexa0][indexa1]b = a;

indexa0

0

1 2 3 4 50

0 0 01 1 1

indexa1

0

1 2 3 4 50

1 1 0 02 2

b (after)

0

1

0 1 2

92.1

1.21

42.011.13

13.17 53.0

• This operation is a ―send.‖

 JLF 36

with(B)

 b = [indexb]a;

indexb

0

1

0 1 2

2

1

05

4 3

b (after)

0

1

0 1 2

92.1

1.21

42.011.13

13.17 53.0

• This operation is a ―get.‖

 JLF 37

with(A)

 a = [idxa0][idxa1]c;

idxa0

0

1 2 3 4 50

0 2 133 2

idxa1

0

1 2 3 4 50

41 0 02 3

collisions

are OK

a (after)

0

1 2 3 4 50

1.0 0.270.093.7 4.3 70.0

• This operation is a ―get.‖

• Collisions in a ―get‖ are acceptable — they just cause
several elements to ―get‖ values from one source.

 JLF 38

with(C)

 [indexc]a = c;

indexc

0

1

2

3

0 1 2 3 4

0

1 2

34

5 5 5

5

5

5 5

5

5 5 5 5 5

5 5

a (after)

0

1 2 3 4 50

1.0 50.0 2.1 60.08.3

0

1

2

3

0 1 2 3 4

6.1 0.1 3.14 2.7

7.2 0.2 6.02

70.0 3.2 0.3

12.0 10.0 93.7 9.4 4.3

one of the
other values

in ―c‖

• This operation is a ―send.‖

 JLF 39

• Collisions in a ―send‖ are acceptable — an arbitrarily
chosen source will be stored into the destination.

 JLF 40

with(A)

 [indexa0][indexa1]b = [idxa0][idxa1]c;

could also be expressed as:

with(A) {

 temp = [idxa0][idxa1]c;

 [indexa0][indexa1]b = temp

 }

idxa0

0

1 2 3 4 50

0 2 133 2

idxa1

0

1 2 3 4 50

41 0 02 3

collisions

are OK

temp (after ―temp = [idxa0][idxa1]c‖)

0

1 2 3 4 50

1.0 0.270.093.7 4.3 70.0

 JLF 41

indexa0

0

1 2 3 4 50

0 0 01 1 1

indexa1

0

1 2 3 4 50

1 1 0 02 2

b (after ―[indexa0][indexa1]b = temp‖)

0

1

0 1 2

1.00.2 70.0

93.7 4.370.0

• The original statement causes both a ―get‖ and a
―send‖ to occur.

 JLF 42

A Detailed Look at Assignment Operators

int i, j;

i = 5;

j = 7;

i += j;

i

12

• When both the lhs and rhs are scalar, normal

Standard C behavior results.

 JLF 43

int:A a0, a1;

a0

0

1 2 3 4 50

1 5 11 5 4 3

a1

0

1 2 3 4 50

7 9 2 1 0 6

a0 += a1;

a0

0

1 2 3 4 50

8 14 13 6 4 9

• When both the lhs and rhs are parallel, element-wise

C* behavior results.

 JLF 44

i = 12;

i += a1;

a1

0

1 2 3 4 50

7 9 2 1 0 6

i

37

• When the lhs is scalar and the rhs is parallel, each

active element of the parallel variable is operated —
in this case, added — into the scalar (as if in some
serial order).

 JLF 45

i = 5;

a1 += i;

a1 (before)

0

1 2 3 4 50

7 9 2 1 0 6

a1 (after)

0

1 2 3 4 50

12 14 7 6 5 11

• When the lhs is parallel and the rhs is scalar, usual C*
rules apply. That is, the scalar variable is promoted to
parallel by replication then element-wise C* behavior
results.

 JLF 46

with(C)

 [indexc]a += c;

a (before)

0

1 2 3 4 50

92.1 1.21 42.0 11.13 13.1753.0

indexc

0

1

2

3

0 1 2 3 4

0

1 2

34

5 5 5

5

5

5 5

5

5 5 5 5 5

5 5

a (after)

0

1 2 3 4 50

54.0 142.1 3.31 50.3 71.13

13.17+6.1+0.1+3.14+2.7+7.2+0.2+6.02+
70.0+3.2+0.3+12.0+10.0+93.7+9.4+4.3

• This operation is a ―send with add.‖

• Collisions in a ―send with combiner‖ are acceptable —
all sources will be combined into the destination by
performing the specified operation.

 JLF 47

Selecting an Arbitrary Representative

• An arbitrary element of a parallel variable may be
selected by casting a parallel variable into a scalar
type.

a (before)

0

1 2 3 4 50

92.1 1.21 42.0 11.13 13.1753.0

double x;

with(A)

 x = (double) a;

x (after)

one of the active values in ―a,‖ namely
53.0, 92.1, 1.21, 42.0, 11.13, or 13.17

• If no element of ―a‖ is active, the result is undefined.

 JLF 48

Explicitly Causing Promotion to Parallel

• A scalar expression may be cast to a parallel type to
cause the explicit promotion to parallel.

• The scalar expression is made parallel by replicating
its value across all positions.

• Using this paradigm, several programming idioms
may be fabricated:

• ―Are any positions active?‖ maps into

|= (int:current) 1

• ―How many positions are active?‖ maps into

+= (int:current) 1

 JLF 49

Grid Communication

dest = [pcoord(0)+k]source;

dest = [pcoord(0)–k]source;

dest = [.+k]source;

dest = [.–k]source;

dest = [(pcoord(0)+k) %% dimof(s, 0)]source;

dest = [(pcoord(0)–k) %% dimof(s, 0)]source;

dest = [(.+k) %% dimof(s, 0)]source;

dest = [(.–k) %% dimof(s, 0)]source;

Where: source is a parallel expression of the current

 shape,
 k is a scalar integral expression,
 s is the shape of source (or ―current‖)

 JLF 50

Grid Communication (continued)

• dimof(s, 0) may be substituted by a constant
expression with the same value, if this is for a
compile-time fully-specified shape.

• Each subscript of a multidimensional parallel variable
must be of one of the above forms.

• All subscripts must be within range. Subscripts which
would be outside the shape may be disabled through
use of the ―where‖ statement.

• The indexed expression may appear on either the lhs
or the rhs.

• Grid communication is faster than General
communication

• Grid sends and gets are of equal cost.

• If the offset expressions, k, are not constant

expressions, a run-time function is called to perform
the appropriate number of Grid operations.

• On the CM-2, both nearest neighbor and power-of-
two neighbor communication with both positive and
negative offsets are performed to minimize execution
time.

 JLF 51

Grid Communication on Right-Hand-Side

double:A newa;

with(A) {

 newa = 0.0;

 where(pcoord(0) < (dimof(A, 0) – 1))

 newa = [.+1]a;

 }

inactive

a

0

1 2 3 4 50

92.1 1.21 42.0 11.13 13.1753.0

newa (before)

0

1 2 3 4 50

0.0 0.0 0.0 0.0 0.0 0.0

newa (after)

0

1 2 3 4 50

92.1 1.21 42.0 11.13 13.17 0.0

 JLF 52

• This operation is a ―grid get.‖

 JLF 53

Grid Communication on Left-Hand-Side

double:A newa;

with(A) {

 newa = 0.0;

 where(pcoord(0) > 0)

 [.–1]newa = a;

 }

inactive

a

0

1 2 3 4 50

92.1 1.21 42.0 11.13 13.1753.0

newa (before)

0

1 2 3 4 50

0.0 0.0 0.0 0.0 0.0 0.0

newa (after)

0

1 2 3 4 50

92.1 1.21 42.0 11.13 13.17 0.0

 JLF 54

• This operation is a ―grid send.‖

 JLF 55

double:A newa;

with(A)

 newa = [(.+1) %% dimof(A, 0)]a;

a

0

1 2 3 4 50

92.1 1.21 42.0 11.13 13.1753.0

newa (after)

0

1 2 3 4 50

92.1 1.21 42.0 11.13 13.17 53.0

• This operation is a ―torus get.‖

• Torus communication has roughly the same
performance as does usual grid communication. (On
the CM-2, for an axis whose dimension is a power-of-
two, the performance is identical. Otherwise, some
additional cost is required to perform the torus
wrapping.)

 JLF 56

Parallel Right Indexing

• A parallel right index may be used as a subscript for a
parallel array when both the index and the array are
of the same shape.

• This enables the programmer to express indirect
addressing within a position.

• For example, given the following declaration:

 int:A i, Array[4];

 it is permissible to write the expression Array[i]. This
means that in each position, i is used as an index in
choosing an element of Array. For the following data,

the selected elements are shaded:

 JLF 57

Array[0]

Array[1]

Array[2]

Array[3]

i 2 0 3 3 1 0

selected

 JLF 58

Built-in Communications Functions

• Grid communication

• Grid and torus versions

• Single axis and multiple axes offsets

• Scan, reduce, copy_reduce, global reduction,
spread, copy_spread, enumerate, rank,
multispread functions are available

• General communication

• Manipulation of send addresses

• Reading and writing complete parallel variable to and
from the front end

 JLF 59

New Boolean Data Type

bool

• A bool is an integral type (i.e., it follows the standard
integral promotions specified in Standard C). When
used as an rvalue, it is promoted to an int.

• Storing into a bool causes a logical test to occur.
That is, if zero is assigned, a zero is stored into the
bool; if a non-zero value is assigned, a one is stored
into the bool.

• A bool is at least one bit in size.

• In C*, a parallel data type and its corresponding
scalar data type need not have identical
representations, alignment, or sizes. For example on
the CM-2 with a VAX front end, a scalar float is
represented in VAX floating-point format, but a
parallel float is represented in IEEE floating-point
format; with any front end, a scalar bool is stored as a
char, but a parallel bool is stored as a bit. On the CM-
5, both scalar and parallel bools are stored as chars.

• A related operator, ―boolsizeof,‖ returns the size of its
operand in units of bools. For example, in the CM-2

 JLF 60

implementation, boolsizeof(int) == 4 and
boolsizeof(int:current) == 32.

Pointers

int * p;

• ―p‖ is a pointer to an int — just plain old C.

double (* p)();

• ―p‖ is a pointer to an unprototyped function which
returns a double — just plain old C.

int (* p)(void);

• ―p‖ is a pointer to an prototyped function which takes
no arguments and returns an int — Standard C.

shape * p;

• ―p‖ is a pointer to a shape.

int:current * p;

• ―p‖ is a pointer to a parallel int of the current shape.

 JLF 61

• The address-of operator, unary ―&‖, applied to a
parallel variable returns a pointer to that parallel
variable. The address-of operator may be applied to
a parallel variable which need not be of the current
shape. Furthermore, no shape need be current.

• The dereference operator, unary ―*‖, applied to a
pointer to a parallel variable returns the parallel
variable.

int:void * p;

• The target of a pointer may be declared of ―void‖
shape.

• Pointers to parallel ints of any shape may be assigned
to such a pointer.

• A pointer to a parallel variable includes sufficient
information to know the actual shape of the parallel
variable to which it points.

• The shape may be retrieved by using the ―shapeof‖
intrinsic function.

shape [8192]S;

int:S x;

 JLF 62

int:void * p;

p = &x;

assert(shapeof(*p) == S);

 JLF 63

Parallel Structures and Unions

• An entire struct or union may be declared to be
parallel.

• Only scalar variables are allowed within a struct or
union.

• Shapes are not allowed within structs or unions;
however, a pointer to a shape is allowed within a
scalar struct or union.

• An array may be included in a parallel struct or union.

• Pointers are not allowed within a parallel struct or
union.

struct complex {

 double real;

 double imaginary;

 };

struct complex:A cmplxpvar;

• cmplxpvar.real and cmplxpvar.imaginary are
parallel doubles of shape A.

 JLF 64

Functions

int:current f(int:current i) {

 }

• Parallel arguments to functions and parallel return
values from functions must be of the current shape
(the keyword ―current‖ need not be used, but the
specified shape does need to be the current shape
when the function is called).

• Functions may deal with parallel arguments and
parallel return values of any shape by passing and
returning their addresses (i.e., use a pointer to a
parallel variable).

• As with assignment, a parallel variable passed by-
value is only passed in the active positions. To cause
all positions of a parallel variable to be accessible
from within a function, pass a pointer to the variable
(or insure that all positions are active by using
―everywhere‖).

• Shapes may be passed to and returned from
functions.

 JLF 65

float:C * f(char:current a, double:void * b, float:T * c);

 JLF 66

Overloading Functions

• User functions may be overloaded — that is, several
functions may share the same name so long as the
functions differ in the type of at least one of their
arguments or have a different number of arguments.

• Before overloading is allowed (specifically, before the
second declaration of a same-named function), the
function must be declared with the overload keyword,

as follows:

overload function;

• This overload declaration must occur in the same
order relative to the function’s prototype declarations
in all compilation units which declare this function.

• The overloaded declarations might appear as follows:

float function(float x);

double function(double x);

float:current function(float:current x);

double:current function(double:current x);

• Based on the type and number of arguments in a call
to an overloaded function, the compiler will select the
appropriate function at compile time.

 JLF 67

To Prototype or Not To Prototype

• If a function is prototyped or does not return an int, it
must be declared before it is called. The form of the
declaration must be the same as the definition.

Declaration:

int:current incr();

Definition:

int:current incr(i)

int:current i;

{

 return i+1;

}

• The above is a non-prototyped function.

• When an integral type smaller than an int is passed to
a non-prototyped function, it is promoted to an int by
the caller.

• When a floating-point type smaller than a double is
passed to a non-prototyped function, it is promoted to
a double by the caller.

 JLF 68

• If the function declares a formal parameter which is
an integral type smaller than an int, the int passed to
the function is demoted to the type of the formal
parameter by the function.

• If the function declares a formal parameter which is a
floating-point type smaller than a double, the double
passed to the function is demoted to the type of the
formal parameter by the function.

• These rules are appropriately extended for parallel
arguments.

• When these promotions and demotions are needless,
they may be omitted by the compiler if the functions
are declared and defined with prototypes.

Declaration:

int:current incr(int:current i);

Definition:

int:current incr(int:current i) {

 return i+1;

}

• The above is a prototyped function.

 JLF 69

• Promotions and demotions of arguments and return
value will occur as if by assignment.

 JLF 70

Dynamic Behavior

• Dynamic storage allocation and deallocation for
parallel variables is provided via the following
functions:

palloc

pfree

• Dynamic allocation and deallocation of shapes is
provided via the following intrinsic functions:

allocate_shape

allocate_detailed_shape

deallocate_shape

 JLF 71

Example of Dynamic Parallel Variable
Allocation

shape [16384]S;

main() {

 int:S * p0, * p1;

 p0 = palloc(S, boolsizeof(int:S));

 p1 = palloc(S, boolsizeof(int:S));

 f(p0);

 pfree(p0);

 pfree(p1);

}

• ―palloc‖ and ―pfree‖ allocate and free storage for
parallel variables.

• The storage is heap managed (i.e., it may be
allocated and freed in any order).

 JLF 72

Example of Dynamic Shape Allocation

shape []S;

main() {

 allocate_shape(&S, 1, 4096);

 {

 int:S t0, t1;

 with(S) {

 t0 = 23;

 t1 = 76;

 t0 += t1;

 }

 }

 deallocate_shape(&S);

}

• The number of positions in shape S is defined at run
time.

• Because shape S was declared to be a rank one
shape, allocate_shape must maintain that rank.

• If shape S were declared as a fully-unspecified shape,
any rank shape could be allocated for it.

• palloc/pfree and allocate_shape/deallocate_shape
may be used together.

 JLF 73

• On the CM-2, a function, allocate_detailed_shape,
allows layout to be specified.

 JLF 74

Invoking the Compiler

• The filename extension for C* source files is ―.cs‖.

• The compiler is named cs and is invoked by entering

the command string:

cs filename.cs

• An executable load module named ―a.out‖ is
produced for the compilation.

• Multiple C* source files may be specified on the
command line. Each source file is compiled, then the
object files are linked into a single executable load
module.

• In addition to C* source files, cs accepts .c source
files, .o output files, .obj JBL files (VAX only), and .a

library files.

• A number of switches may also be specified on the
command line.

 JLF 75

Switches In Common with cc

-c Compile only.

-Dname[=def] Define a symbol name to the
preprocessor.

-g Produce additional symbol table information
for debugging; required for C* debugging
functions.

-Idir Search the specified directory for #include

files.

-Ldir Add dir to the list of directories in the object

library search path.

-llib Link with the specified library.

-o output Change the name of the final output file to
output.

-pg Link with profiling libraries for use with gprof.

-Uname Undefine the C preprocessor symbol name.

 JLF 76

Basic Switches

-cm2 Use the CM-2 C* compiler. This is the default
unless the environment variable
CS_DEFAULT_MACHINE is set to cm5.

-cm5 Use the CM-5 C* compiler.

-help Give information about cs without compiling.

-O Enable additional optimization. A program
compiled with this level of optimization is too
highly optimized to debug.

-O0 Disable optimization.

-version Print the version number of the compiler prior
to compilation. If no source file is specified on
the command line, compilation is not
attempted.

 JLF 77

The CM-2 Compilation Process

• Compilation of C* programs progresses in three
stages:

• A preprocessing phase

• A C* compilation phase

• A C compilation phase (including preprocessing
and linking)

• The C* compilation phase produces a C/Paris file with
the extension ..c.

• By default, .cs files progress through all three stages
whereas .c, .o, and .a files bypass the first two

stages.

 JLF 78

Advanced Switches

-cc compiler Use the specified C compiler.

-dryrun Show, but do not execute, the compilation
steps.

-force Force .c files through the C* compilation

phase.

-keep c CM-2 only. Keep the intermediate ..c file.

-noline CM-2 only. Suppress #line directives in the

output C file.

-verbose Display informational messages during
compilation. (Must use ―-v‖ on the CM-5.)

-warn Suppress warnings from the C* compilation
phase.

-Zcomp switch Pass option switch to component comp,
where comp is cpp or cc. Use this switch to
specify options for cpp or cc that cs does not

recognize. For example,

 cs -Zcc -w prog.cs

 will suppress cc warning messages.

 JLF 79

Issues

• Object-oriented programming in C

• C++ as emerging object-oriented C standard

• C* was designed to allow C++ object-oriented
extensions to be layered on top of it

• Object-oriented C* will not be available in the
forseeable future

• Slicewise code generation from C*

• There are no plans to build a C* compiler which
generates slicewise code for the CM-2

• Complex numbers are not yet available in C* (or in
Standard C)

• Complex numbers may be used through the
struct mechanism; however, they may not be
directly manipulated in expressions

• On the CM-2, the dimension of each axis of a shape
must be a power of two; product of all dimensions
must be a multiple of the attached machine size

• This is a Paris restriction which applies only to
the CM-2 version of C*

 JLF 80

• Allow the programmer to choose the appropriate
language for their task

• One of C*’s goals is to provide most capabilities
other languages provide

• Arbitrary bit length integers

• C* provides bit-fields to minimize storage
requirements for smaller integers

• C* does not provide arbitrary bit length integers
through their manipulation in expressions

• Standardization of C*

• We support the standardization of data parallel
programming languages

• We are currently involved in working with other
computer system vendors to standardize C*

