
MIPS Assembly Language
Prof. James L. Frankel

Harvard University

Version of 3:30 PM 28-Nov-2023
Copyright © 2023, 2022, 2020, 2018, 2015 James L. Frankel. All rights reserved.

Assembler Input

• The assembly language file should have “.s” as its file name extension

• Input contains one instruction or directive per line (or a blank line)
• Assembly Language instructions
• Pseudo-instructions
• Assembler directives
• Lines may be prefixed by a label followed by a colon
• Comments

• Comments begin with a pound-sign (#) and continue through the end of the line

• SPIM includes minimal input and output system call facilities using
the syscall instruction

2

Usual Assembler Input Format

• If a label is present, it begins in column one and ends with a colon

• Instruction opcodes, pseudo-instruction opcodes, and assembler
directives are preceded by a tab (so that they are aligned) and follow
a possible label

• If an opcode or directive has any operands, then the opcode or
directive is followed by a tab so that the operands are aligned

• Comments may be on lines by themselves or may follow instructions
or directives
• If the comments follow instructions or directives, they are preceded by tabs

so that they are aligned

3

Pseudo-Instructions

• Pseudo-instructions look like real instructions, but extend the
hardware instruction set

• Each pseudo-instruction is translated into one or more real assembly
language instructions

• The assembler may use register $at in generating code for pseudo-
assembly language instructions

• In the documentation included with SPIM (at
http://www.cs.wisc.edu/~larus/SPIM/spim_documentation.pdf), all
pseudo-assembly language instructions are tagged with a dagger (†)

4

http://www.cs.wisc.edu/~larus/SPIM/spim_documentation.pdf

Examples of Pseudo-Instructions

• Absolute value: abs rdest, rsrc

• Bitwise logical NOT: not rdest, rsrc

• Load immediate: li rdest, immediate

• Set on equal: seq rdest, rsrc1, rsrc2
 seq rdest, rsrc, immediate

• Unconditional branch: b label

• Load address: la rdest, label

• Copy contents of register: move rdest, rsrc

5

Assembler Directives

• Directives tell the assembler how to function

• Groups of directives
• In which segment should following code or data be placed

• Externally visible labels

• Reserve space for data
• Possibly initialize the values of data

6

Assembler Segment Directives

• .text
• Code or data in subsequent lines is placed in the text segment
• The text segment is where executable code exists
• .text may be followed by an address

• Code or data in subsequent lines is placed in the text segment beginning at the specified
address

• In SPIM, the text segment may contain only instructions or .word’s

• .data
• Code or data in subsequent lines is placed in the data segment
• The data segment is where static data stored in memory exists
• .data may be followed by an address

• Code or data in subsequent lines is placed in the data segment beginning at the specified
address

7

Externally Visible Label Directive

• .globl label
• The specified label is made visible to other files

• The label must be declared within the current file

• Each executable unit must have the label main declared and made
externally-visible

8

Assembler Data Value Directives

• .word w1, w2, …
• The value of each operand (w1, w2, etc.) is stored in a 32-bit word in memory

• The words are aligned on word boundaries

• .half h1, h2, …
• The value of each operand (h1, h2, etc.) is stored in a 16-bit halfword in

memory

• The halfwords are aligned on halfword boundaries

• .byte b1, b2, …
• The value of each operand (b1, b2, etc.) is stored in a 8-bit byte in memory

• No alignment is performed

9

Assembler String Value Directives

• .ascii "string"
• The "string" is stored in memory using ASCII values

• No alignment is performed

• .asciiz "string"
• The "string" is stored in memory using ASCII values with nul-termination

• No alignment is performed

10

Global Variables in C

• Because all global integral variables are initialized to zero, generated
code should use the .word, .half, and .byte directives, as appropriate,
to reserve space for each global integral variable and should specify a
value of 0 for each variable

• Because all string literals in C are nul-terminated, the .asciiz directive
should be used to reserve space for each global string literal and
should specify the string literal’s value for the <string> field

11

Assembler Data Space Directive

• .space n
• Reserve n uninitialized bytes of space in memory

• No alignment is performed

• The .space directive cannot be used to reserve space for global arrays
because C requires that all global variables (including arrays) have all
elements initialized to 0
• Therefore, global arrays should appear in assembly language as .byte

directives with the appropriate number of 0’s to reflect the array size

12

Reminder: Reserving Memory for
Global/Static Data
• Space for global/static variables is reserved in the .data segment

• Space may be reserved using the .word, .half, .byte, .ascii, .asciiz, and .space
directives

• In the C Programming Language, static variables are initialized to zero
• Therefore, storage for all static variables should be reserved using the .word,

.half, and .byte directives with an initial value of zero

• In the C Programming Language, literal strings are always nul-
character terminated
• Therefore, storage for literal strings should be reserved using the .asciiz

directive

13

Minimal Input/Output and Other System Calls

• print_int

• print_string

• read_int

• read_string

• exit

14

print_int System Call

.text
 .globl main

main: li $a0, 42 # $a0 <- value of integer to be printed
 li $v0, 1 # $v0 <- system call code for print_int
 syscall # output the integer

15

print_string System Call

.data

hello: .asciiz "Hello world\n"

 .text
 .globl main

main: la $a0, hello # $a0 -> the greeting string
 li $v0, 4 # $v0 <- system call code for print_string
 syscall # output the greeting string

16

read_int System Call

.text
 .globl main

main: li $v0, 5 # $v0 <- system call code for read_int
 syscall # $v0 <- input integer

• read_int reads a complete line including the newline character and
returns the value of an integer in register $v0

• Characters following the integer are consumed and ignored

17

read_string System Call

.data

buffer: .space 256

 .text
 .globl main

main: la $a0, buffer # $a0 -> input string buffer
 li $a1, 256 # $a1 <- buffer length
 li $v0, 8 # $v0 <- system call code for read_string
 syscall # read a null-terminated string into buffer

• Semantics are same as for Unix/Posix fgets()

18

exit System Call

.text
 .globl main

main: li $v0, 10 # $v0 <- system call code for exit
 syscall # exit from the program

19

Declaring the System Call Functions

• You should require any C program that calls system calls to declare,
but not define, those system calls

• The acceptable C declarations for the system calls follow:
• void syscall_print_int(int integer);

• void syscall_print_string(char *string);

• int syscall_read_int(void);

• void syscall_read_string(char *buffer, int length);

• void syscall_exit(void);

20

Generating IR & MIPS Code for System Calls

• Because the system calls follow the standard C calling conventions for
specified parameters and for possible return values, your usual MIPS code
for function calls should be emitted
• (parameter, 0, $r0) for a single parameter
• (resultWord, $r1) for a single int return value

• For the actual subroutine call, instead of generating a call IR that generates
a MIPS jal instruction,
• Generate a syscall IR with the syscall name as its only operand

• For example, for print_string, generate IR:
• (syscall, print_string)

• Generate two MIPS instructions
• For example, for print_string, generate MIPS:
• li $v0, 4
• syscall

21

Using SPIM

• SPIM is already installed on our class computers

• Invoke SPIM from the shell by entering “spim”

• At the “(spim) ” prompt, load your code by entering

 load “filename.s”

• Run program to completing by entering

 run

• Run a single instruction by entering

 step

• Run a program from the current location to completion without pausing by entering

 continue

• Leave SPIM by entering

 exit

• The previous SPIM command can be repeated by typing simply the Enter key

22

Stepping a Program Under SPIM

• After entering a “step” command to SPIM, the MIPS instruction that
has just completed is displayed

• Here is an example of SPIM instruction display

 [0x00400024] 0x34080061 ori $8, $0, 97 ; 6: li $t0,97

• “[0x00400024]” is the address of the instruction that just completed

• “0x34080061” is the value of the instruction word

• “ori $8, $0, 97” is the disassembly of the instruction

• “; 6: li $t0,97” is the assembly language input to SPIM added as a
comment with its line number in the source file

23

Displaying Instructions and Data in SPIM

• At the “(spim) ” prompt, display all registers by entering

 print_all_regs
 print_all_regs hex

• Display the value of one register by entering

 print $n
 print $sn

• Display the contents of memory by entering

 print address (such as: print 0x10010000)
 print label (such as: print main)

 To be able to use a label in SPIM, it must be declared as a global symbol

• Display all labels by entering

 print_symbols

24

Additional SPIM Commands

• Clear all registers and memory by entering

 reinitialize

• A breakpoint is a point in the program where execution will pause when
running instructions following a “run” or “continue” command
• Execution will pause before the instruction at the breakpoint

• Set a breakpoint at an address or label by entering

 breakpoint address
 breakpoint label

• Display all breakpoints by entering

 list

25

Passing Command-Line Arguments to a MIPS
Program Running Under SPIM
• See argcargv.s at on the class website for a program that prints out argc

and each argv string
• To pass arguments using command-line version of SPIM:

• spim "" argcargv.s a b c d

• To pass arguments using QtSpim:
• (1) First start up qtspim
• (2) Load the .s file to be run
• (3) Under "Simulator", click on "Run Parameters" and enter the parameters in the

"Command-line arguments to pass to program" text box
• (4) Run the program

• Note: qtspim does not do the correct parsing into separate parameters if directories
include spaces!

26

https://cscie95.dce.harvard.edu/fall2023/mips-code/argcargv.s

	Slide 1: MIPS Assembly Language
	Slide 2: Assembler Input
	Slide 3: Usual Assembler Input Format
	Slide 4: Pseudo-Instructions
	Slide 5: Examples of Pseudo-Instructions
	Slide 6: Assembler Directives
	Slide 7: Assembler Segment Directives
	Slide 8: Externally Visible Label Directive
	Slide 9: Assembler Data Value Directives
	Slide 10: Assembler String Value Directives
	Slide 11: Global Variables in C
	Slide 12: Assembler Data Space Directive
	Slide 13: Reminder: Reserving Memory for Global/Static Data
	Slide 14: Minimal Input/Output and Other System Calls
	Slide 15: print_int System Call
	Slide 16: print_string System Call
	Slide 17: read_int System Call
	Slide 18: read_string System Call
	Slide 19: exit System Call
	Slide 20: Declaring the System Call Functions
	Slide 21: Generating IR & MIPS Code for System Calls
	Slide 22: Using SPIM
	Slide 23: Stepping a Program Under SPIM
	Slide 24: Displaying Instructions and Data in SPIM
	Slide 25: Additional SPIM Commands
	Slide 26: Passing Command-Line Arguments to a MIPS Program Running Under SPIM

