
Basic Blocks, Next-Use, Liveness
& Register Allocation

Prof. James L. Frankel
Harvard University

Version of 6:09 PM 30-Mar-2022
Copyright © 2022, 2020, 2016, 2015 James L. Frankel. All rights reserved.

Identifying Basic Blocks

• A basic block is a maximum length sequence of instructions that must
always be executed without interruption
• This implies that the only entry point into the block is at the beginning

• This implies that the only exit point from the block is at the end

2

Basic Blocks Algorithm (Finding Leaders)

• Apply the following algorithm to a list of IR instructions generated for
a module

• First, identify leaders
• A leader is an IR instruction that begins a basic block

① The first IR instruction is a leader

② Any target of a conditional or unconditional branch/jump is a
leader

③ Any IR instruction immediately after a conditional or unconditional
branch/jump is a leader

3

Basic Blocks Algorithm (Finding Basic Blocks)

• After finding all leaders, identify basic blocks

For each leader, its basic block consists of itself & all IR instructions up
to but not including the next leader or the end of the IR program

4

Next-Use & Liveness Information

• We examine each basic block separately
• Initially, all non-temp variables in basic block B are labeled as live on exit

with their next-use after the block
• Progress from the last IR statement to the first IR statement in the block
• At each statement i: x = y z in B, where represents any operation and

where i identifies this statement
• First, attach to statement i the information about next use & liveness for x, y & z
• Then, set x to “not live” & “no next use”
• Finally, set y & z to “live” & set the next uses of y & z to i
• The order of these three steps is important

• Associate the information about x, y & z with i before changing their liveness & next-use
information

• In case a variable appears on both the left- and right-hand sides, always set the information
for the lhs variable before setting the information for the rhs variable

5

Liveness Across Basic Blocks

• The set of variables that are live at the end of a basic block is the
union of those live at the beginning of each of its successor blocks

6

Flow Graph with Initial Constraints

a = b + c
d = d – b
e = a + f

f = a - d
b = d + f
e = a - c

b = d + c

B1

B2

B4

B3

All variables are a, b, c, d, e & f

b, c, d, e, f live

b, d, e, f live

7

Establish Liveness on Exit from Basic Block B4

a = b + c
d = d – b
e = a + f

f = a - d
b = d + f
e = a - c

b = d + c

B1

B2

B4

B3

All variables are a, b, c, d, e & f

b, c, d, e, f live

b, d, e, f live

abcdefAssume a, b, c,
d, e & f live

8

Establish Liveness on Entry to Basic Block B4
and on Exit from Basic Blocks B2 and B3

a = b + c
d = d – b
e = a + f

f = a - d
b = d + f
e = a - c

b = d + c

B1

B2

B4

B3

All variables are a, b, c, d, e & f

b, c, d, e, f live

b, d, e, f live

abcdefAssume a, b, c,
d, e & f live

acdef
acdef abcdef

9

Establish Liveness on Entry to Basic Blocks B2
and B3 and on Exit from Basic Block B1

a = b + c
d = d – b
e = a + f

f = a - d
b = d + f
e = a - c

b = d + c

B1

B2

B4

B3

All variables are a, b, c, d, e & f

b, c, d, e, f live

b, d, e, f live

abcdefAssume a, b, c,
d, e & f live

acdef
acdef abcdef

acde acdf
acdef

10

Establish Liveness on Entry to Basic Block B1
and feed that information back to Block B4

a = b + c
d = d – b
e = a + f

f = a - d
b = d + f
e = a - c

b = d + c

B1

B2

B4

B3

All variables are a, b, c, d, e & f

b, c, d, e, f live

b, d, e, f live

abcdef
Now known

that bcdf live
(not a & e)

acdef
acdef abcdef

acde acdf
acdef

bcdf

11

Update Liveness on Exit from Basic Block B4

a = b + c
d = d – b
e = a + f

f = a - d
b = d + f
e = a - c

b = d + c

B1

B2

B4

B3

All variables are a, b, c, d, e & f

b, c, d, e, f live

b, d, e, f live

bcdef
Now known

that bcdf live
(not a & e)

acdef
acdef abcdef

acde acdf
acdef

bcdf

12

Update Liveness on Entry to Basic Block B4
and on Exit from Basic Blocks B2 and B3

a = b + c
d = d – b
e = a + f

f = a - d
b = d + f
e = a - c

b = d + c

B1

B2

B4

B3

All variables are a, b, c, d, e & f

b, c, d, e, f live

b, d, e, f live

bcdef
Now known

that bcdf live
(not a & e)

cdef
cdef bcdef

acde acdf
acdef

bcdf

13

Update Liveness on Entry to Basic Blocks B2
and B3 – No Changes to Liveness Discovered

a = b + c
d = d – b
e = a + f

f = a - d
b = d + f
e = a - c

b = d + c

B1

B2

B4

B3

All variables are a, b, c, d, e & f

b, c, d, e, f live

b, d, e, f live

bcdef
Now known

that bcdf live
(not a & e)

cdef
cdef bcdef

acde acdf
acdef

bcdf

14

Liveness Across Basic Blocks in our
Unoptimized Code
• In our compilers and before any optimizations are performed, our

temporaries/registers are never live across basic blocks
• We never use a temporary/register from one statement to another

• We are using this behavior so that we are able to reset the use of
temporaries/registers at the start of each new statement

• Therefore, in our compilers and before any optimizations are performed,
temporaries/registers are never live across statements

• Certain optimizations may cause temporaries/registers to be live
across statements within a basic block
• Unless you perform optimizations across basic blocks, temporaries/registers

will not be live across basic blocks

15

Graph Coloring

• For an arbitrary graph, how many colors are needed to color each
node such that no two connected nodes are the same color?
• We say that a graph is k-Colorable, where k is the minimum number of colors

to colorize such a graph

• It can be proven that this problem is NP-Complete
• That is, in general it cannot be solved in polynomial time

• This is a member of a set of problems that are very difficult to solve including
the knapsack problem – packing 3D objects into a defined volume

• However, for many real-world problems, there are heuristics that can
solve these problems in quite reasonable time

16

Graph Coloring for Planar Graphs

• If a graph is planar – that is, it can be mapped onto a planar (2D)
surface with no crossing lines – how many colors are needed for such
a graph?

• Problem was mentioned by Möbius as early as 1840

• Of course, planar graphs include our usual 2D maps in, say, a
Mercator projection

• Imagine a Mercator projection representing a continent on the Earth
• Each nation would be a node

• Each nation must be contiguous

• Borders would be connecting arcs
• No two nations sharing a border would have the same color

17

Planar Graphs – 3-Colorable

18

Planar Graphs – 4-Colorable

19

Four Color Theorem for Planar Graphs

• The so-called Four Color Theorem showed that any planar graph is 4-
Colorable
• It was proven in 1976 by Kenneth Appel and Wolfgang Haken using a

computer program that systematically identified all possible ways that nodes
could be connected on a planar graph

• 1,936 different maps were identified

20

Application of Graph Coloring to Register
Allocation
• Initially assume an infinite number of registers/temporaries during code

generation

• Create a graph in which nodes (representing registers/temporaries in a
program fragment) are connected by an arc when the
registers/temporaries are needed at the same time

• Then, the minimum number of colors to color such a graph would
represent the minimum number of registers required for that program
fragment

• Moreover, such a graph would identify the constraints on register
assignment

• We call such a graph a Register Interference Graph

21

Register Interference Graph

• Each register is a node

• An edge connects two registers whenever one is live where the other
is defined
• For this example, we’ll assume that all named identifiers are registers

• We’ll examine basic block B1 from above

a = b + c
d = d – b
e = a + f

22

Register Interference Graph Coloring (1 of 2)

• Color graph with k colors, where k is the number of available registers

• No two adjacent nodes have the same color

• Color represents a register

• This problem is NP-Complete

• Heuristic: If a node has fewer than k edges, remove the node and its
edges to simplify the graph and then try coloring the graph again
• This works because, if a node has fewer than k edges we can always color that

node with a different color from its neighbors and still use no more than k
colors

23

Register Interference Graph Coloring (2 of 2)

• Simplify the graph by removing all nodes with fewer than k edges and
those nodes’ edges
• If the resultant graph is empty, then we’re done!
• Assign colors (i.e., map temporaries into registers) in the opposite order

• If nodes still remain with k or more edges, introduce spill code to
move the contents of registers into temporaries in memory and then
to restore them when needed
• Spilling a register into memory frees the register and breaks edges in the

graph
• Using memory is slow, so…

• Avoid spills in inner loops

24

Basic Block B1 Alone Including Liveness

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

25

Building Register Interference Graph (1 of 10)

• b is live when a is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

26

Building Register Interference Graph (2 of 10)

• c is live when a is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

27

Building Register Interference Graph (3 of 10)

• d is live when a is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

28

Building Register Interference Graph (4 of 10)

• f is live when a is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

29

Building Register Interference Graph (5 of 10)

• a is live when d is defined
• c is live when d is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

30

Building Register Interference Graph (6 of 10)

• f is live when d is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

31

Building Register Interference Graph (7 of 10)

• a is live when e is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

32

Building Register Interference Graph (8 of 10)

• c is live when e is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

33

Building Register Interference Graph (9 of 10)

• d is live when e is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

34

Building Register Interference Graph (10 of 10)

• f is live when e is defined

a

d

b

c

f

e

a = b + c
d = d – b
e = a + f

B1

acdef

bcdf

35

Register Interference Graph for Basic Block B1

a

d

b

c

f

e

36

Node Removal (4-Colorable) (1 of 5)

a

d

b

c

f

e

Remove Node b
(1 Edge < 4 Edges)

37

Node Removal (4-Colorable) (2 of 5)

a

d

b

c

f

e

Remove Node c
(3 Edges < 4 Edges)

38

Node Removal (4-Colorable) (3 of 5)

a

d

b

c

f

e

Remove Node d
(3 Edges < 4 Edges)

39

Node Removal (4-Colorable) (4 of 5)

a

d

b

c

f

e

Remove Node e
(2 Edges < 4 Edges)

40

Node Removal (4-Colorable) (5 of 5)

a

d

b

c

f

e

Remove Node f
(1 Edge < 4 Edges)

41

Node Coloring (4-Colorable) (1 of 6)

a

d

b

c

f

e

Color Node “a” Red (r0)

42

Node Coloring (4-Colorable) (2 of 6)

a

d

b

c

f

e

Color Node “f” Green (r1)

43

Node Coloring (4-Colorable) (3 of 6)

a

d

b

c

f

e

Color Node “e” Blue (r2)

44

Node Coloring (4-Colorable) (4 of 6)

a

d

b

c

f

e

Color Node “d” Yellow (r3)

45

Node Coloring (4-Colorable) (5 of 6)

a

d

b

c

f

e

Color Node “c” Green (r1)

46

Node Coloring (4-Colorable) (6 of 6)

a

d

b

c

f

e

Color Node “b” Green (r1)

47

Final Register Assignment for Basic Block B1

• Final Register Assignment for B1

• a is in r0 (red)

• b is in r1 (green)

• c is in r1 (green)

• d is in r3 (yellow)

• e is in r2 (blue)

• f is in r1 (green)

• We could have chosen to use more than four registers

48

How Many Registers to Use?

• We’ll leave this as an optimization question for the students

• Perhaps try to use the minimum number of registers possible
• But, if we’re saving all of the $s registers anyway this is of no benefit

• Perhaps make all of the $s registers available and minimize the
number of $t registers used if there can be no spill code

49

